Contribution of Network Connectivity in Determining the Relationship between Gene Expression and Metabolite Concentration Changes
نویسندگان
چکیده
One of the primary mechanisms through which a cell exerts control over its metabolic state is by modulating expression levels of its enzyme-coding genes. However, the changes at the level of enzyme expression allow only indirect control over metabolite levels, for two main reasons. First, at the level of individual reactions, metabolite levels are non-linearly dependent on enzyme abundances as per the reaction kinetics mechanisms. Secondly, specific metabolite pools are tightly interlinked with the rest of the metabolic network through their production and consumption reactions. While the role of reaction kinetics in metabolite concentration control is well studied at the level of individual reactions, the contribution of network connectivity has remained relatively unclear. Here we report a modeling framework that integrates both reaction kinetics and network connectivity constraints for describing the interplay between metabolite concentrations and mRNA levels. We used this framework to investigate correlations between the gene expression and the metabolite concentration changes in Saccharomyces cerevisiae during its metabolic cycle, as well as in response to three fundamentally different biological perturbations, namely gene knockout, nutrient shock and nutrient change. While the kinetic constraints applied at the level of individual reactions were found to be poor descriptors of the mRNA-metabolite relationship, their use in the context of the network enabled us to correlate changes in the expression of enzyme-coding genes to the alterations in metabolite levels. Our results highlight the key contribution of metabolic network connectivity in mediating cellular control over metabolite levels, and have implications towards bridging the gap between genotype and metabolic phenotype.
منابع مشابه
Connectivity as a Measure of Power System Integrity
Measures of network structural integrity useful in the analysis and synthesis of power systems are discussed. Signal flow methodology is applied to derive an expression for the paths between sources and sinks in a power network. Connectivity and reach ability properties of the network are obtained using the minors of a modified connectivity matrix. Node-connectivity, branch connectivity and mix...
متن کاملA Mimic of the Tumor Microenvironment on GPR30 Gene Expression in Breast Cancer
Introduction: The G-protein coupled receptor 30 (GPR30) gene is a member of the G-protein coupled receptor (GPCR) family; involved in breast, endometrial, and ovarian cancers. Many GPCR receptors that are implicated in several types of human cancers are correlated with increased cell proliferation and tumor progression; especially GPR30 gene. Methods: The breast cancer MCF-7 and MDA-MB-231 cel...
متن کاملInvestigating the Relation between LCK Gene Expression with Type 2 Diabetes Patients in Yazd Diabetes Research Center
Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and insulin secretory defect. Deficiency of cellular immunity is known as one of the factors involved in the pathogenesis of T2DM. lymphocyte-specific protein tyrosine kinase( LCK) is an important gene involved in the intracellular signaling pathways of lymphocytes. This study aimed at determining and comparing LCK gene expr...
متن کاملEffects of eight weeks aerobic training on kynurenine and gene and protein expression of aryl hydrocarbon receptor in the heart of male rats
Introduction: Understanding the molecular cellular mechanisms of the heart is essential for the prevention and treatment of cardiovascular disease. This study aimed was to investigate the effect of aerobic exercise on the kynurenine and gene and protein expression of aryl hydrocarbon receptor (AHR) in the heart tissue of healthy male Wistar rats. Materials and Methods: The present study is an e...
متن کاملP-64: The Relationship between Polymorphism in Gene of Insulin-Like Growth Factor-I and The Serum Periparturient Concentration in Holstein Dairy Cows
Background: One of the most important metabolic factors affecting the reproductive activity is insulin-like growth factor-I (IGFI) concentration changes after calving. Recently, Maj et al. (2008) discovered a significant association between the IGF-I genotypes based on the 5'-untranslatedregion (5'-UTR) of IGF-I gene and the IGF-I blood level. The objective of this study is to investi...
متن کامل